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Overview

Timeline
Year 1 of 3-year program
New 3-year CRADA extension
Builds on FY13-FY15 R&D

Budget

1:1 DOE:Cummins cost share
— In-kind Cummins contribution

FY16 DOE Funding: $300k

— Task3: Cummins CRADA on Diesel
Emissions Control

Barriers

e From DOE VT MYPP:

— 2.3.1.B: Cost-effective emission control
— 2.3.1.C: Modeling for emission control
— 2.3.1.E: Emissions-control durability

Partners
ORNL & Cummins Inc.
CLEERS
Queen’s Univ. Belfast
Univ. of Chem. & Tech. Prague

— Part of ORNL project: “Enabling Fuel
Efficient Engines by Controlling
Emissions” (2015 VTO AOP Lab Call)

Low Temperature
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Objectives & Relevance

Objectives
e Enable & improve Predictive Catalyst-Performance Models

— Based on controlling physics & chemistry

— Independent of specific application platform (e.g., truck, bus, boat, power)
e Characterize spatiotemporally distributed catalyst performance

— Investigate ageing impacts (performance at different catalyst states)

— Validate & improve models

— Mine data & insights for OBD & control methodologies

e Develop methods for real-time catalyst-state assessment

Relevance

e Predictive models enhance engine-catalyst-system performance
— Design — improved design tools, more reliable analysis-led design
— Development — faster & lower cost process, reduced component cost & size
— In-Field Use — improved control, OBD, efficiency & durability
— Enables improved emissions compliance & improved fuel economy
— CLEERS Priority Survey ranks SCR aging mechanisms & models #4 (/64)

e Advances DOE goals for improving catalyst cost, modeling & durability




CRADA Approach

Structuring & validation of
Predictive Models

Better models for improved design tools, OBD & control

Understanding performance-

parameter correlations
Insights for better modeling, control & OBD

Data

SS & Transient

Knowledge

Reaction network,

Property correlations Ideas for Control & OBD

Enables improved efficiency, reliability & durability

Clean, Fuel-Efficient,

Durable
Engines in the Marketplace
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Cummins Development

Improved Design Tools

Methods.& Insights
Better Control & OBD | Fscusyammpvnieine




Milestones

Completed all 2015 Milestones:
v Q2: Assess distributed performance of Field-Aged commercial SCR catalyst

v Q3: Present CRADA ageing insights at CLEERS Workshop

On track for meeting 2016 R&D objectives:

e Develop Step-Response method for determining catalyst-state parameter

e Assessment & development of predictive catalyst performance model

e Investigate common aspects of dynamic inhibition



Technical Progress: Overview

Enabling SmartCatalyst Systems
Tools & Models for better Design, OBD & Adaptive Control

J

4 Impacts of Field-Ageing & Adaption Methods

— Field-Aged sample compared to DeGreened
= Lower SCR conversion and Total NH; Capacity
= Same Dynamic NH; Capacity and adsorption energetics

~N

= Can use same adsorption model with scaling factor )

Are insights from|| Concept for Spaci data allows
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Tech.Prog.: Similar Impact from two Field-Aged Catalyst Samples

Are FA-1 insights (2015 AMR) applicable to other Field-Aged (FA) samples?

e Will a single predictive model work for different Field-Aged samples?
e Commercial 2010 Cummins, Cu/SAPO-34 SCR catalysts
— Different field exposures; unknown exposure details; normal ageing profiles
— Value - real-world on-road use; data to critically assess predictive model
e Two different field-aged samples show similar performance response
— Field ageing degrades conversion & Total NH; Capacity (TC)
— Same capacity utilization correlations (cf. Backup Slides)
— Does not change absorption energetics (cf. Operando Isotherms)
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Tech.Prog.: Field Ageing does not Practically Impact
NH,; Adsorption Energetics

12 — Integral-to-Location Oy vs. Local pyyys), i
300 & 400 C; Std SCR; DG vs. FA-1 vs FA-2B; 2010 CMI * Operando isotherms

1 [ 300°C DG, FA-1 & FA-2 — Measured under SCR-reaction
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e Similar NH; adsorption energetics for S""P”f’es modelmg of aged samp.les
three catalyst states: DG, FA-1 & FA-2 — Field ageing reduces number of sites
— Same shape at a given temperature — But adsorption occurs in same way
— Compliments CLEERS work (ACE032) — Use same model with scaling factor

= Neat isotherm studies; SSZ & SAPO Need to determine catalyst state
" CRADA provides operando & ageing —i.e., age-dependent TC & scaling factor
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Tech.Prog.: I ransient Response Measurement of Catalyst State

4-Step Protocol
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* DC, UC & TC capacity components determined from 4-Step Protocol

— UC varies with catalyst state
= UC & TC variations are related
= Use to measure catayst state
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* Protocol not practical for on-road use
* NH; step response to probe UC variations
— SCR continues with NH;>NO

— Could implement via dosing control

Use for active catalyst-state determination

— Determine factors for feedback
= e.g., TC scaling factor for predictive-model

— Enable OBD & adaptive control
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Tech.Prog.: Stepped SCR Dosmg to Determine TC Scaling Factor

Step-2B Onset NH3 Transient
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— Varies with ageing; DG vs. FA . ’;’ = /’ .
— Possible to use other transient features Eam %Zi r, .
— Alternate probes might be possible ?izz *"’{*m - .
e Many challenges remaining %150 0.1
—What pulse & characteristic to use o | e step28T50 | 005
— Correlations with catalyst state & factors o Logucat™” o 0
— Use probe pulse or natural drive-cycle dynamic?ﬂ - 1

Approach for practical catalyst-state assessment
Pathway for thru-life OBD & feedback-enabled adaptive control

Unused NH3 Capacity (g/Lcatalyst)
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Predictive Model
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Tech.Prog.: Validating Cummins Kinetic-Model Structure;p1.2
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Goal: develop a predictive model to determine the catalyst’'s internal state

e Cummins’ base predictive model is very complex

— Many ways to structure & numerous model parameters to fit/determine

— Developed based on integral DeGreened catalyst measurements

— Run in AVL Boost

e Predictive model modifications for FA-2 sample
— Reduced SCR reaction pre-exponential (impacts conversion and DC distributions)
— Reduced integral TC (impacts TC & UC distributions)

e Model accurately predicts conversion distributions within the catalyst

— Ability to predict intra-catalyst distributions a rigorous assessment test
— Particularly for catalysts with internal storage functions like SCR and LNT
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Tech.Prog.: Validating Cummins Kinetic-Model Structure;p22
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e Model accurately predicts internal NH; capacity utilization
— In different catalyst states: DG & FA-2
— Relationships between TC, DC & UC components
— Supports pathway for catalyst-state assessment; i.e., via UC measure

Predictive model rigorously validated vis-a-vis conversion & capacity distributions
— Confirms that model’s internal workings are structured & fit properly
— Enhances confidence in its use to design OBD & reduce design margins

[ Next step is assessing transient performance ]
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FY2015 AM5 Review

Responses to 2015 Review Comments ;.. cuers: max score: 4)
Numerous Positive Comments: | Category | Score |

o ‘“excellent approach,” “results always great” Approach 3.40
e “solid technical accomplishments” Tech Progress 3.40
o “exgellent collaborations” Collaboration 3.60
e “solid proposed work to meet a very good plan”
. . Future Research 3.30
Recommendations: _
Weighted Average 3.41

% Include transient behavior in the study
— Transients are included in the experimental protocols, and are used for capacity analysis
— An additional transient-response protocol was developed and used this year; see results
— Future work will focus on assessing the predictive model vis-a-vis measured transients

% |dentify strategies for catalyst-state assessment
— This is a major goal of the CRADA, and is one basis for the CRADA approach
— A specific strategy was suggested last year, and others have been demonstrated in the CRADA
— Early work in demonstrating such a strategy is presented this year

\( Take care to avoid duplication of effort (e.g., within ORNL)
— The CRADA works to avoid and does not duplicate efforts
— The CRADA coordinates with CLEERS to compliment without duplicating efforts; e.g., spatially resolved
ageing studies, field-aged samples, operando isotherm measurements

o Better characterization (temp histogram) of field aged samples, and analysis of other axial & radial locations
— The field aged samples are from real-world exposure which does not log such detailed exposure data
~— The team works to maximize value and advance the CRADA & DOE goals within in budget constraints

e Desire to know more regarding Cummins’ contributions to the CRADA
~— Both ORNL & Cummins contributing to planning & analysis; Cummins leads the modeling efforts

e Suggest including automotive OEM'’s in the CRADA
Such valuable broader input is received and incorporated via the AMR and ACEC Tech Team

— The CRADA is a formal partnership between ORNL and Cummins
16



Collaborations & Coordination with Other Institutions

e Cummins
— CRADA Partner, Neal Currier (Co-Pl)

CLEERS (ACE022, Pihl, Wednesday 4:15pm)
— Diagnostics, analysis & modeling coordination

UCT, Prague (Profs. Marek & Ko¢i) %CLEERS

— N,O formation & control studies (with CLEERS)

— David Mracek, et al. (2015). Appl. Catalysis B: Env. 182, 109-114. 6 CEMISTRY AND TECHNOLOGY
— Petr Koéi, et al., 24" NAM, 2015. PRAGUE

— David Mracek et al., CAPoC10, 2015.

(ross Cut Lean
Exhaust Emissions
Reduction Simulations

/O POLITECNICO
(HERES DI MILANO

Politecnico di Milano (Profs. Tronconi & Nova) iy
— Mechanistic SCR studies (with CLEERS) Q |

— Maria Pia Ruggeri, et al. (2015). Appl. Catalysis B: Env.l 166, 181-192.
— M.P. Ruggeri, et al. CAPoC10, 2015.

Queen’s University, Belfast (Prof. Alex Goguet)

— Spatially resolved methods and analysis
— Kevin Morgan, et al. (2016). ACS Catalysis 6, 1356-1381.

Publications, Presentations & Recognition
— 3 Archival Journal Publication, 4 Presentations
— Invited journal publication & presentation
— Spaci-approach highlighted on ACS Catalysis cover

17



Remaining Challenges & Barriers, and Proposed Future Work

Major Challenge: Improved catalyst Efficiency, Cost, Durability, OBD & Control

Solution: Develop Predictive Models & methods for Catalyst-State Assessment
» Spatially & temporally resolved intra-catalyst performance distributions
» Apply for model development & mine correlations for control strategies

Challenges 4/ » Approach\Future Work (FY16-18):
Sensing catalyst state Develop practical diagnostic methods

ol ~ Determine state-dependent parameters and - Advance insights from Pulse\Step-Response method
g variations throughout catalyst-system life - Investigate other transients and response features
§ - Improved OBD — |dentify how to use natural drive-cycle features
¥ | Life-optimized catalyst performance Develop robust physicochemical predictive models
_E’ - Enable through-life adaptive control based - Validate distributed transient performance
% on sensor feedback - Adjust internal structure & complexity as required
“”_, - Assess vis-a-vis other SCR catalysts & aged states
% *New insights to advance primary modeling Further detailed characterization & analysis
g & state-sensing objectives - Incorporating & comparing to CLEERS data

- Threshold aspects of dynamic inhibition
- Radial & axially distributed ageing impacts

Work supports predictive model & state-sensor development for enabling
improved catalyst efficiency, control, durability & cost

J
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Summary

e Relevance
— CRADA work enables improved catalyst knowledge, models, design & control
— This reduces catalyst system costs & required engine-efficiency tradeoffs
— This in turn enables DOE goals for improved fuel economy

Approach

— Develop & apply diagnostics to characterize catalyst nature

— Analyze data to understand mechanistic details of catalyst functions & ageing impacts

— Develop physicochemical predictive catalyst models based on improved catalyst knowledge

Technical Accomplishments
— Evaluate second Field Aged sample, FA-2
— Compare distributed performance with DG & FA-1 samples; identify parameter correlations
— Demonstrate practical method for catalyst-state assessment
— Validated internal structure and fit of Cummins predictive catalyst model
— Via distributed steady-state performance; transient assessment is next

Collaborations

— Numerous university collaborations resulting in presentations, publications and advances
— Coordination & collaboration with other DOE projects to maximize benefit

e Future Work

— Apply data & insights to improve catalyst predictive models & catalyst-state assessment
— Analysis to understand transient catalyst performance & common parameter thresholds
— Evaluation of alternate ageing conditions, sample locations and catalyst types

19



Technical Back-Up Slides
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Experimental: Catalyst, Conditions, Methods & Approach

_ Commercial m Conditions

Catalyst

Mini-Core size

Channel density
Space Velocity
NH;, NO,

Base O, & H,0O
Temperatures
Standard SCR
Fast SCR
Diagnostic

2010 CMI, Cu/SAPQO-34
21 cells; ca. 2.45-cm
long x 0.78 wide
300 cpsi (FA2 is 400)
40,000 hr
200ppm, 200ppm
10% & 5%

200, 300 & 400°C
v focus of these slides
v

SpaciMS & FTIR,
CMI 4-Step Protocol

DeGreened
(DeG)

Field Ageing

(FA1)

Field Ageing

(FA2)

a
I Flow N T I
Eon Ba B, it % "'xflﬂh#*'“*ﬂ

‘.

700°C, 4hrs,
10%0, + 5%H,0;

* From front of sample B11-22

Prepared by CMI;

* CMI date: 7-1-2014

* Normal ageing profile

* From front of larger sample;
* Pretreatment at ORNL:

* 500°C toremove HC & S
» Cycling at 200, 300 & 400C
to steady state

Prepared by CMI;

* Provided: 9-9-2015
* Normal ageing profileFA-2A:

as received

* FA-2B: High T Treatment

« Baseline mix; 500°C, 2hr

SpaciMS$S

\[ FTIR |
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Tech.Prog.: Assessing Differences in Two Field-Aged Catalysts
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Are FA-1 insights (2015 AMR) applicable to other field-aged (FA) samples?

Will a single predictive model work for different Field-Aged samples?
Commercial 2010 CMI, Cu/SAPO-34 SCR catalysts

— Different field exposures; unknown exposure details; normal ageing profiles
— Value — real-world on-road use; data to critically assess predictive model

Field ageing degrades conversion and Total NH; Capacity (TC)

— Generally similar although different absolute impacts
— Better FA-2 conversion consistent with greater TC
— Similarities suggests FA-1 insights may be applicable to other FA samples

Using data to assess Cummins’ predictive models
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Tech.Prog.: NH; Capacity Utilization Similar for Field Aged Samples
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o Three NH; Capacity Components: Total (TC), Dynamic (DC), Unused (UC)
— DC is fraction used during SCR; DC + UC =TC
o Field ageing has systematic impact on NH; capacity utilization & distributions
— Reduces Total Capacity, TC
— Lower SCR rate extends SCR deeper into the catalyst
— Reduces DC-TC separation; separation occurs deeper into the catalyst
— Reduces Unused Capacity, UC
o Ageing state and capacity utilization are correlated

— Use capacity to determine catalyst state and state-dependent parameters
23



Tech.Prog.: Spaci Used to Validate Kinetic Model Structure

Cumulative Conversion (%)
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Adsorption Isotherm has Characteristics of 2-Site Langmuir

1.2 -

Integral-to-Location 6y vs. Local ppyy3;,
300 & 400 C, Std SCR, DeG 2010 CMI

1
| 300°C DG |
0.8

NH, Coverage During SCR: Op (\)

& 300 DeG
: A

A

0.2 -: /400 DeG

<Back Front |
oy v

* NH; Isotherm from SpaciMS data
— Under SCR reaction conditions
= |[sotherm has extra loss term: reaction
— Normalized coverage shown
= DC/(DC + UC)
— Adsorption is faster than even Fast SCR

= Implied by DC-TC separation at a
common [NH,] for Standard & Fast
SCR (previously shown)

— Can interpret isotherm classically

0.0E+00 5.0E-05 1.05-04‘ 1.5E-04 '2.05-0! Shape is like 2-site Langmuir

Local NH; Partial Pressure (atm)

Pihl & Daw CLEERS data from Commercial SSZ-13 SCR
100 0.12

80 - 0.1

60 -~

a0

AHads (kJ/mOI)
NH; inventory (mol/l)

20 -

0

0 0.02 004 0.06 008 0.1 0 200 400 600 800 1000
NH; inventory (mol/l) NH; concentration (ppm)

— See Pihl & Daw CLEERS data
= From commercial SSZ-13 SCR

= Model fit with uniform partitioning
between the ca. 80 & 30kJ/mol sites

— Distinct knee at low NH; partial pressure

* Isotherm flattens at higher temperature
— Typical nature for Langmuir isotherm
25



Field Ageing Does Not Change Dynamic NH; Inhibition

200 —2010CMlI, Std SCR, 400C

180 | NH; Conversion /@
&
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e Dynamic inhibition at SCR start

— Observed in catalyst front for all samples
— Observed above consistent [NH,] limit

= = 165ppm [NH;] at 300°C
= = 125ppm [NH;] at 400°C
= 400°C more sensitive

k.

(Tronconi, Cat.Today 105, p529; describes dynamic inhibition )

‘modified redox (MR) SCR rate law’
Depends on T, Cyo, Onus & Coo

k;q(){jj cxp ( — %l) (-‘.\lf.)”.\ll 11 P B
h
'NO = B (m) {|3}

. NH;
I+ Ky =,

rvo: rate of DeNOXx reaction

Eno: Activation energy for DeNOXx reaction

Cuo: 9as phase concentration of NO

Onna: surface coverage of NH,

kno: pre-exponential factor for DeNOx reaction rate constant
Knns: NH; rate parameter

Pog: O, partial pressure

S1: redox site for O, & NO adsorption/activation

S2: acidic site for NH; adsorption y

e Suggests inhibiting NH; & NO
interactions not impacted by FA

— Abundance of S2 vs S1 sites

= Due to faster reaction or less accessible DC? .

= More sensitive to spillover from Higher-E S2 -
sites, which are more dominant at high-T

— Impacts NO & NH; adsorption parameters :

i.e., NH; spillover from S2 to S1 is equivalent
in DG & FA; even with lower FA TC

Consistent with lower NH; vs. NO capacity
Consistent with separate S1 & S2 sites

Can lose many S2 sites before change in
NO-adsorption inhibition occurs

FA selectively impacts S2 sites over S1?
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Dynamic NH; Inhibition Exist Deep Into FA-2 Catalyst Sample

Step 2 Onset Transient: Field Aged 2b-2, Std SCR, 400C

i
3

200 [

150 4

—1/16L
—1/8L
—3/16L
100 N - : —1/4L
" —3/8L
= —1/2L

AN —3/4L
» \ E

0 20 40 60 80 100 120 140
Trigger Time, Step 2 (s); (does not account for trigg-NH3 step offset)

NO Concentration (ppm)




Cummins 4-Step Protocol Resolves Reaction Parameters

< Clean ><tandard SC>< NH, Saturate >< Clean >

[NOJ: 200 ppm 200 ppm 0 200 ppm

[NH3]J: 0 200 ppm 200 ppm 0]
200 | Step 1 Step 2 Step 3 Step 4
. NO Oxidation NH, Oxidation NO Oxidation
g_ NO ’
& 150 N2
c
i) Dynamic
= y Unused
© 100 - :
s Capacity
c
O
&)
S 501 Parasitic NH; Oxidation
O NO,
IC NH,
0

K. Kamasamudram, et al., Catalysis Today 151(2010) 212-222.

« Step1: NO oxidation
« Step2: SS NO, & NH; conversions, Parasitic NH; oxidation, Dynamic NH; capacity
« Step3: NO,-free NH; oxidation, Unused NH; capacity

. * Step4: NO oxidation, Total NH; capacity Total = Dynamic + Unused

for the Department of Energy




Pulsed/Step-Response Protocol

< Clean ><Std SCR-1>< Std SCR-2 >< Clean >

[NOJ: 200 ppm 200 ppm 200 ppm 200 ppm
[NH3]J: 0 200 ppm 300 ppm 0
200 . Step 1 Step 2A Step 2B Step 4
NO Oxidation NO Oxidation
&
2 150 \
C
O
T 100 -
I=
)
O
cC> 50 A
@)
A
0 o

« Step1: NO oxidation
« Step2A: DC-1 from SCR with ANR=1

« Step2B: DC-2 from SCR with ANR>1 Step4: Separate determination of DC-1 +
DC-2

AT vy s e NG
for the Department of Energy [P T—





